◇ 近期代表论文:
Liu, J.(刘进超,一作)*, Zhang, D.*, Yu, D., Ren, M., Xu, J., Machine learning powered ellipsometry, Light: Science & Applications, 2021.(Nature旗下物理/光学权威期刊,IF=20.257,)
Liu, J.(刘进超,一作), Gibson, Stuart J., Mills, J., and Osadchy, M., Dynamic spectrum matching with one-shot learning, Chemometrics and Intelligent Laboratory Systems, vol.184, pp.175-181, 2019.(化学信息学知名期刊,IF=4.175,)
Liu, J.(刘进超,一作), Osadchy, M, Ashton, L., Foster, M., Solomon, C. J., and Gibson, S. J., Deep convolutional neural networks for Raman spectrum recognition: a unified solution, Analyst, vol. 142, pp. 4067-4074, 2017.(分析化学老牌知名期刊,IF=5.227,ESI研究前沿核心论文、ESI高被引论文,)#Analyst期刊近十年论文中当前唯一原创非综述的ESI研究前沿核心论文#
Liu, J.(刘进超,一作), Fan, Z., Olsen, S., Christensen, K., and Kristensen, J., Boosting active contours for weld pool visual tracking in automatic arc welding, IEEE Transactions on Automation Science and Engineering, vol. 14, pp.1096-1108, 2017.(IEEE自动化科学与工程汇刊,IF=6.636,)
Bai, F., Liu, J.*(刘进超,通讯), Liu, X., Osadchy M., Wang C., and Gibson S.J., LSHR-Net: a hardware-friendly solution for high-resolution computational imaging using a mixed-weights neural network, Neurocomputing, vol 406, pp.169-181, 2020.(神经网络知名期刊,IF=5.779,)
◇ 指导学生论文:
1. Wu, Y.(吴英英,M6米乐网页版入口2021级硕士生,一作), Liu, J.*(刘进超,通讯), Wang, Y., Gibson, S., Osadchy, M., Y. Fang. TeaNet: Task-enhanced augmentation networks for few-shot infrared spectrum recognition. 2022.
2. Niu, X.(牛昕,M6米乐网页版入口2021级硕士生,一作),Liu, J.*(刘进超,通讯), Wang, Y., Osadchy, M., Y. Fang. Mind the Gap: Learning Modality-Agnostic Representation for Cross-Modality Matching. 2023
◇ 近期合作论文:
1. J. Wei et al., Genetic U-Net: automatically designed deep networks for retinal vessel segmentation using a genetic algorithm, IEEE Transactions on Medical Imaging, vol. 41, no. 2, pp. 292-307, Feb. 2022.(医学图像处理权威期刊,IF=10.048,)
2. C. K. Mididoddi et al., High-throughput photonic time-stretch optical coherence tomography with data compression, IEEE Photonics Journal, vol. 9, no. 4, pp. 1-15, Aug. 2017.(IEEE光学期刊,IF=2.443,)
※ 近期专利(已授权)
一类确定材料光学常数的人工智能方法,日本专利,2022年
一类确定材料光学常数的人工智能方法,美国专利,2022年
一类确定材料光学常数的人工智能方法,中国专利,2023年
※ 典型商(工)业化应用:
人脸建模合成与异质人脸识别系统。此系统占英国市场80%, 同时被美国、加拿大、澳大利亚、法国等二十多个国家的警察局及其他执法机关采用。
管制物品智能检测系统。
制药过程智能检测系统。